

A Storm is Brewin': Results of LSPA WES Grant Study of PFAS in Rain

Duff Collins, PG, LSP Matt Jones, CCM Sam Olney, PG Cathy Rockwell, PE

Why did we conduct the study?

PFAS found in rain in other areas

Understand if PFAS is present in rain in Massachusetts

Study Overview

Received LSPA WES Grant to help cover costs

_____v

Teamed with Alpha Analytical

Collected rain samples from across Massachusetts

Evaluated both high intensity (convective) and low intensity (stratiform)

Association

Massachusetts PFAS in Rain Study | Conceptual Model

Evaluate both high intensity and longer low intensity rain events

Precip Type	Precip Intensity	Spatial Scale	Lifetime over an area
Stratiform	Lower	Larger	Longer – hours to days
	X.au	21	2
The state		in the second se	A Jose Ha

Identified potential sample locations across the 4 MassDEP regions

What we were looking for at sample locations

25 rain collection stations were selected based location and setting

Next: PFAS Sampling Training for our Volunteers!

Waterproof clothing

Chemical ice packs

Sunscreens, insect repellants, moisturizers immediately before or during sampling Food or drink near/during sample collection

Use Instead

Cotton clothing & shoes Regular ice in plastic bags Always wear nitrile gloves when handling samples

What Was Provided

• • •

Rain Collection Equipment

Collection Tray Debris Screen Rain Gauge

Sample Collection	Equipment &
Supplies	

Sample Bottles & Cooler Gloves Chain of Custody Shipping Labels & Packing Tape

.:

Copy of the Sample Collection SOP for reference

You Will Supply

Ice Ziplock Bags for ice

Rain Collection Station Set-Up and Sampling

3 Steps as detailed in the Sample Collection SOP

1. Locating & Setting Up Your Collection Station 2. Collecting a Sample

040

3. Recording Field Observations

Data Collection Form

https://forms.office.com/r/ZcsWsipFuu

Questions	Responses 57	
 8. How would you characterize the precipitation? Heavy (i.e. larger drops with wider separation) Light (i.e. drizzle, fine drops with less separation) Did Not Observe (i.e. you weren't home during the Other 		
 9. Did you observe any of the following during the Thunder Hail High Winds Did Not Observe (i.e. you weren't home during the Other 		
10. How would you describe the clouds during the Nimbostratus (i.e. gray cloud layer - thick enough somewhat uniform sheet)	to obscure the sun, low ragged clouds beneath a of a mountain or huge tower, upper portion usually	5 mins

Massachusetts PFAS in Rain Study | **Sample Collection Logistics**

Weather forecasting!

SUNDAY EVENING WEATHER BRIEFING

LITTLE / NO	
SLIGHT	
MED	
HIGH	
11011	

Likelihood of sampleable event (≥ 0.25" precipitation)

Area Forecast Discussion National Weather Service Boston/Norton MA 740 PM EDT Sun Aug 29 2021

Much warmer and more humid Monday ahead of a cold front, that will produce scattered thunderstorms. A few strong to severe storms are possible in the afternoon and early evening. The cold front moves through Monday night. High pressure then briefly returns Tuesday with drier and less humid air. Tropical moisture associated with the remnants of Hurricane Ida arrives Wednesday into Thursday with the risk of heavy rain and flooding, but axis of heaviest rainfall remains uncertain. Drier and cooler conditions arrive heading into Labor Day weekend with a touch of fall.

	Monday, August 30, 2021				Tuesday, August 31, 2021			Wednesday, September 1, 2021			Thursday, September 2, 2021					
	MORNING	AFTERNOON	EVENING	OVERNIGHT	MORNING	AFTERNOON	EVENING	OVERNIGHT	MORNING	AFTERNOON	EVENING	OVERNIGHT	MORNING	AFTERNOON	EVENING	OVERNIGHT
	8am-12pm	12pm-4pm	4pm-8pm	8pm-8am	8am-12pm	12pm-4pm	4pm-8pm	8pm-8am	8am-12pm	12pm-4pm	4pm-8pm	8pm-8am	8am-12pm	12pm-4pm	4pm-8pm	8pm-8am
WEST		SLIGHT								MED	MED	HIGH	HIGH	MED	SLIGHT	
CENTRAL			SLIGHT							MED	MED	HIGH	HIGH	MED	SLIGHT	
NORTHEAST			SLIGHT								MED	HIGH	HIGH	HIGH	MED	
SOUTHEAST										SLIGHT	MED	HIGH	HIGH	HIGH	MED	

- Delivered to inbox Sunday evening and Thursday evening
- Likelihood of a sampleable event (0.25") in the region
- Both event types (stratiform and convective)

Study Overview: Quick Facts

- 50 Primary Samples Collected
 - 27 Stratiform Samples from 5 Stratiform Rain Events
 - 23 Convective Samples from 6 Convective Rain Events
- QA/QC Samples
 - 3 Field Duplicates
 - 2 Field Blanks (all ND)
 - Equipment Blank on Sampling Equipment (ND)
- September 13 October 30, 2021

Summary of Results

Detected PFAS

	% Detected	Minimum Detected	Maximum Detected	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	6%	1.82	3.48	
Perfluorobutanoic Acid (PFBA)	13%	2.3	3.36	
Perfluorohexanoic Acid (PFHxA)	2%	1.94	1.94	
Perfluorononanoic Acid (PFNA)	2%	2.86	2.86	
Perfluoropentanoic Acid (PFPeA)	6%	2.08	2.35	

Results in ng/l

Summary of Results

5 Different PFAS Compounds Detected

10

Samples from Convective Rain Events with Detections Sample from Stratiform Events with Detections

000

Results: Convective Rain Events

Results: Stratiform Rain Events

Massachusetts PFAS in Rain Study | **Precipitation Types**

Molecular Weight versus Detection Frequency

Key Take Aways

Very low concentrations total PFAS <8.78 ng/L

No regulatory or personal health implications

Demonstrates widespread nature recycling of molecules in the water cycle

Next steps

Thank you!

- Questions?

18 May 2022

PFAS Annihilator™ Supercritical Water Oxidation (SCWO) for PFAS Destruction

Presented to: LSP Association

What is PFAS Annihilator[™]?

<u>Challenge:</u> To meet the growing need for effectively and efficiently treating water for per- and polyfluoroalkyl substances (PFAS), we must destroy the substances, prevent them from transferring elsewhere, and avoid creating harmful byproducts.

Solution: Battelle has created a closed-loop, on-site destruction solution powered by supercritical water oxidation (SCWO) that does exactly that.

- Utilizes supercritical water oxidation (SCWO) proven to break the PFAS carbon-fluorine bond.
- SCWO has been used successfully to treat other recalcitrant waste including nerve agents, radioactive waste, and polychlorinated biphenyls (PCBs).

The Annihilator Effectively Addresses PFAS-Contaminated Media

SCWO Destruction of PFAS

- Supercritical water exhibits unique properties
 - Gas and liquid phases become indistinguishable
 - Density is about 10% of water above the supercritical point
 - Water no longer behaves as a polar solvent
 - Fast transport properties result in increased reaction kinetics
- High temperature in an oxidizing environment overcomes activation energy to break C-F bond

Super Critical Water

Critical Point

F/374°

705°

Steam

221.1 Bar/3,210 PSI

Liquid Water

Triple Point

Temperature

Pressure

Ice

PFAS Annihilator™ Process Flow

- Water is pretreated and concentrated (if necessary)
- The water is heated to supercritical temperature and pressure using one or more heat sources
- Feed is oxygenated with H₂O₂ or air
- A neutralizing agent (NaOH) is added to remove hydrofluoric acid in effluent
- The effluent is cooled
- Generated gas is separated from the liquid
- Effluent streams are further treated (if necessary) and discharged

Battelle's Bench-Scale Systems have Effectively Treated AFFF and Aqueous Investigation Derived Waste

PFAS Annihilator™ Discriminating Factors

- Not a new technology
- Results in destruction of PFAS rather than transferring them from one media to another
- Fast. <10 second residence time
- Effective on short- and long-chain PFCAs and PFSAs
- Not inhibited by organic co-contaminants
- Operates at lower temperature than thermal treatment technologies
- Treats dilute and highly-concentrated PFASimpacted media
- Generates little waste

SCWO is an established technology for difficult-totreat compounds that is validated by EPA for PFAS

- PFAS Annihilator[™] demonstrated to > 99.99% destruction
- EPA peer-reviewed publication December 2021
- EPA is a co-PI with Battelle on Navy-led FY22 ESTCP proposal pending award

Bench-Scale Demonstration of Performance – Laboratory Spike Water

Lab Sample	Pre- Destruction (ppt)	Post- Destruction (ppt)	Annihilation
Total PFAS	386,301,393	580	99.9998%

- Single run of a high-level spiked sample to simulate AFFF concentrations
- Reduced concentration of 6 out of 8 PFAS analytes (that were initially present) to below 5 ppt
- Overall destruction efficiency was better than 99.999% (5 logs)

Laboratory Spike

BATTELLE

PFAS Annihilator[™] **Groundwater & IDW Destruction**

Sample	Inlet PFOA (ng/L)	Effluent PFOA (ng/L)	Inlet PFOS (ng/L)	Effluent PFOS (ng/L)	% Destruction Target PFAS
Pet 65-1	17,590	3.16	221,300	< 5	99.998
Pet 65-2	16,820	< 5	207,800	17.8	99.996
Pet 65-3	20.62	< 5	369.0	9.51	92.601
WR AM-126	33.00	1.68	190.0	7.03	98.751
NI	59.20	2.51	80.20	9.51	98.334

Effluent PFOS (ng/L)

PFAS Destruction in IDW

SCWO has been Demonstrated to Effectively Treat a Range of PFAS-Impacted Media

			ΣPFAS (μg/L)		
Feed Type	Dilution Factor	TOC (mg/L)	Influent Concentration (Pre-destruction)	Effluent Concentration (Post-destruction)	% Destruction
AFFF – Legacy PFOS (Lightwater)	~1:25	7,480	471,000	0.100	>99.99
	~1:10	23,900	2,150,000	0.667	>99.99
AFFF – Legacy Fluorotelomer	1:1.63	26,500	13,29	0.171	>99.99
AFFF – Modern Fluorotelomer (C6)	1:1.45	126,000	13,57	3.08	99.9
GAC Regenerant (alcohol-based)	1:15	2.22	23.9	0.0157	99.9
	1:20	2.05	27.3	0.0176	99.9
Soil Wash Rinsate	NA	582	0.709	0.0422	92.8
Landfill Leachate	NA	804	41.0	0.0135	99.9

Mass Balance

- Able to account for >90% of fluorine in system
- Very low levels of fluorine (and target PFAS) in vapor effluent

PFAS Annihilator[™]

Waste Physical and/or Chemical Characteristics Impact on Performance

Chemical Characteristic	Impact	Mitigation (if applicable)
High chemical oxidant demand	Greater mass of oxidant required	 Dilution of feed may be required
High total organic carbon	Less heat input needed	 Dilution of feed may be required if heating value is greater than heat dissipated
Presence of petroleum hydrocarbons	Less heat input needed	 Dilution of feed may be required if heating value is greater than heat dissipated Free-phase oil (if present) is removed during pretreatment
Presence of chlorinated solvents	Formation of hydrochloric acid	 Increase dosage of neutralizing agent
High solids content	Reactor plugging	Perform pre-filtration
High ion concentration	Increase potential for plugging	 Increase frequency of salt removal from salt separator
	Ability to concentrate feed using RO is reduced	 Perform bulk salt removal and/or other types of pre-concentration

Case Study - Background

Objective - Deploy and assess performance of a mobile supercritical water oxidation (SCWO) system to eliminate PFAS in landfill leachate

- 1-week field demonstration (February 2022)
- Waste treatment facility located in Michigan
- Performed bench-scale test to evaluate appropriate operating conditions and confirm destruction efficacy
- Utilized mobile demonstration system
 - 40 to 50 gallons per day (gpd) capacity
 - Utilized hydrogen peroxide as oxidant and sodium hydroxide as neutralizing agent
 - Equipped with prefiltration to remove solids & post ion exchange (IX) system for metals treatment

Demonstration Highlights

- >99.9% reduction of PFAS for all runs for which samples were collected
- No PFAS detected in reactor effluent except PFOA
- No PFAS detected in vapor
- No VOCs or SVOCs detected in aqueous effluent
- Some metals in effluent, but removed by ion exchange

Pre- and Post-Treatment Samples

Feed	Influent PFAS (PFOA) Conc (ppt)	Effluent PFAS (PFOA) Conc (ppt)
1 st Stage & Final	7,300	6.97
Concentrate & Final	5,870	9.13
Concentrate	11,500	7.69

Aqueous Reactor Effluent PFAS Results

Total PFAS

Select Congeners

Aqueous Reactor Effluent VOCs & SVOCs Destruction Results

VOCs

SVOCs

PFAS Annihilator[™] is a scalable technology which enables tailored site solutions

Bench/Lab

- · Bench-scale testing
- Prepare for field deployment
 - Characterization
 - Optimization
- Develop new applications
 - Solids/Soil Reactor

- Smaller, finite volumes
- Treatment waste streams
- Concentrated regenerant
- In-situ concentrates

Capacity per unit: 40 – 60 gpd; up to 10x capacity w/ concentration

Mobile 2

- · Larger, finite volumes
- Stockpiled waste
- Process water
- AFFF

Capacity per unit: 300 – 500 gpd; up to 10x capacity w/ concentration

Site Scalable

- Mobile or brick and mortar
- Higher volume
- · Longer-term operation
- Can be coupled with pump & treat or in-situ treatment

Capacity: scaled to site requirements

Annihilator[™] is being deployed to Air Force and other sites

Q & A with the Presenter

Stephen Rosansky

Senior Engineer

Battelle

813.422.0317

rosansky.org

Association

